Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

FKBP12 physically and functionally interacts with aspartokinase in Saccharomyces cerevisiae.

Identifieur interne : 001A87 ( Main/Exploration ); précédent : 001A86; suivant : 001A88

FKBP12 physically and functionally interacts with aspartokinase in Saccharomyces cerevisiae.

Auteurs : C M Alarc N [États-Unis] ; J. Heitman

Source :

RBID : pubmed:9315655

Descripteurs français

English descriptors

Abstract

The peptidyl-prolyl isomerase FKBP12 was originally identified as the intracellular receptor for the immunosuppressive drugs FK506 (tacrolimus) and rapamycin (sirolimus). Although peptidyl-prolyl isomerases have been implicated in catalyzing protein folding, the cellular functions of FKBP12 in Saccharomyces cerevisiae and other organisms are largely unknown. Using the yeast two-hybrid system, we identified aspartokinase, an enzyme that catalyzes an intermediate step in threonine and methionine biosynthesis, as an in vivo binding target of FKBP12. Aspartokinase also binds FKBP12 in vitro, and drugs that bind the FKBP12 active site, or mutations in FKBP12 surface and active site residues, disrupt the FKBP12-aspartokinase complex in vivo and in vitro.fpr1 mutants lacking FKBP12 are viable, are not threonine or methionine auxotrophs, and express wild-type levels of aspartokinase protein and activity; thus, FKBP12 is not essential for aspartokinase activity. The activity of aspartokinase is regulated by feedback inhibition by product, and genetic analyses reveal that FKBP12 is important for this feedback inhibition, possibly by catalyzing aspartokinase conformational changes in response to product binding.

DOI: 10.1128/mcb.17.10.5968
PubMed: 9315655
PubMed Central: PMC232445


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">FKBP12 physically and functionally interacts with aspartokinase in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Alarc N, C M" sort="Alarc N, C M" uniqKey="Alarc N C" first="C M" last="Alarc N">C M Alarc N</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710</wicri:regionArea>
<wicri:noRegion>North Carolina 27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1997">1997</date>
<idno type="RBID">pubmed:9315655</idno>
<idno type="pmid">9315655</idno>
<idno type="pmc">PMC232445</idno>
<idno type="doi">10.1128/mcb.17.10.5968</idno>
<idno type="wicri:Area/Main/Corpus">001A85</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A85</idno>
<idno type="wicri:Area/Main/Curation">001A85</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A85</idno>
<idno type="wicri:Area/Main/Exploration">001A85</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">FKBP12 physically and functionally interacts with aspartokinase in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Alarc N, C M" sort="Alarc N, C M" uniqKey="Alarc N C" first="C M" last="Alarc N">C M Alarc N</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710</wicri:regionArea>
<wicri:noRegion>North Carolina 27710</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="ISSN">0270-7306</idno>
<imprint>
<date when="1997" type="published">1997</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aspartate Kinase (genetics)</term>
<term>Aspartate Kinase (metabolism)</term>
<term>Binding Sites (MeSH)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Feedback (MeSH)</term>
<term>Heat-Shock Proteins (genetics)</term>
<term>Heat-Shock Proteins (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Recombinant Fusion Proteins (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Tacrolimus (pharmacology)</term>
<term>Tacrolimus Binding Proteins (MeSH)</term>
<term>Threonine (analogs & derivatives)</term>
<term>Threonine (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aspartate kinase (génétique)</term>
<term>Aspartate kinase (métabolisme)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Protéines de fusion recombinantes (MeSH)</term>
<term>Protéines de liaison au tacrolimus (MeSH)</term>
<term>Protéines de liaison à l'ADN (génétique)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Protéines du choc thermique (génétique)</term>
<term>Protéines du choc thermique (métabolisme)</term>
<term>Rétroaction (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Sites de fixation (MeSH)</term>
<term>Tacrolimus (pharmacologie)</term>
<term>Thréonine (analogues et dérivés)</term>
<term>Thréonine (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Threonine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aspartate Kinase</term>
<term>Carrier Proteins</term>
<term>DNA-Binding Proteins</term>
<term>Heat-Shock Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aspartate Kinase</term>
<term>Carrier Proteins</term>
<term>DNA-Binding Proteins</term>
<term>Heat-Shock Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Thréonine</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aspartate kinase</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines de transport</term>
<term>Protéines du choc thermique</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aspartate kinase</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines de transport</term>
<term>Protéines du choc thermique</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Tacrolimus</term>
<term>Thréonine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Tacrolimus</term>
<term>Threonine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Feedback</term>
<term>Mutation</term>
<term>Protein Binding</term>
<term>Recombinant Fusion Proteins</term>
<term>Tacrolimus Binding Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Liaison aux protéines</term>
<term>Mutation</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines de liaison au tacrolimus</term>
<term>Rétroaction</term>
<term>Sites de fixation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The peptidyl-prolyl isomerase FKBP12 was originally identified as the intracellular receptor for the immunosuppressive drugs FK506 (tacrolimus) and rapamycin (sirolimus). Although peptidyl-prolyl isomerases have been implicated in catalyzing protein folding, the cellular functions of FKBP12 in Saccharomyces cerevisiae and other organisms are largely unknown. Using the yeast two-hybrid system, we identified aspartokinase, an enzyme that catalyzes an intermediate step in threonine and methionine biosynthesis, as an in vivo binding target of FKBP12. Aspartokinase also binds FKBP12 in vitro, and drugs that bind the FKBP12 active site, or mutations in FKBP12 surface and active site residues, disrupt the FKBP12-aspartokinase complex in vivo and in vitro.fpr1 mutants lacking FKBP12 are viable, are not threonine or methionine auxotrophs, and express wild-type levels of aspartokinase protein and activity; thus, FKBP12 is not essential for aspartokinase activity. The activity of aspartokinase is regulated by feedback inhibition by product, and genetic analyses reveal that FKBP12 is important for this feedback inhibition, possibly by catalyzing aspartokinase conformational changes in response to product binding.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9315655</PMID>
<DateCompleted>
<Year>1997</Year>
<Month>10</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0270-7306</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>17</Volume>
<Issue>10</Issue>
<PubDate>
<Year>1997</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>FKBP12 physically and functionally interacts with aspartokinase in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>5968-75</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The peptidyl-prolyl isomerase FKBP12 was originally identified as the intracellular receptor for the immunosuppressive drugs FK506 (tacrolimus) and rapamycin (sirolimus). Although peptidyl-prolyl isomerases have been implicated in catalyzing protein folding, the cellular functions of FKBP12 in Saccharomyces cerevisiae and other organisms are largely unknown. Using the yeast two-hybrid system, we identified aspartokinase, an enzyme that catalyzes an intermediate step in threonine and methionine biosynthesis, as an in vivo binding target of FKBP12. Aspartokinase also binds FKBP12 in vitro, and drugs that bind the FKBP12 active site, or mutations in FKBP12 surface and active site residues, disrupt the FKBP12-aspartokinase complex in vivo and in vitro.fpr1 mutants lacking FKBP12 are viable, are not threonine or methionine auxotrophs, and express wild-type levels of aspartokinase protein and activity; thus, FKBP12 is not essential for aspartokinase activity. The activity of aspartokinase is regulated by feedback inhibition by product, and genetic analyses reveal that FKBP12 is important for this feedback inhibition, possibly by catalyzing aspartokinase conformational changes in response to product binding.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Alarcón</LastName>
<ForeName>C M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heitman</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006360">Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2280-42-4</RegistryNumber>
<NameOfSubstance UI="C010994">3-hydroxynorvaline</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2ZD004190S</RegistryNumber>
<NameOfSubstance UI="D013912">Threonine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.2.4</RegistryNumber>
<NameOfSubstance UI="D001222">Aspartate Kinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.2.1.-</RegistryNumber>
<NameOfSubstance UI="D022021">Tacrolimus Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>WM0HAQ4WNM</RegistryNumber>
<NameOfSubstance UI="D016559">Tacrolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001222" MajorTopicYN="N">Aspartate Kinase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005246" MajorTopicYN="N">Feedback</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006360" MajorTopicYN="N">Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016559" MajorTopicYN="N">Tacrolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022021" MajorTopicYN="N">Tacrolimus Binding Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013912" MajorTopicYN="N">Threonine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1997</Year>
<Month>10</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1997</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1997</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9315655</ArticleId>
<ArticleId IdType="pmc">PMC232445</ArticleId>
<ArticleId IdType="doi">10.1128/mcb.17.10.5968</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1994 Jun 30;369(6483):756-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8008069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Nov 19;75(4):805-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8242751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Jul 29;265(5172):674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7518616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Oct 17;13(20):4886-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7957056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Nov 24;372(6504):359-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7969494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12574-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7809080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Dec 15;13(24):5944-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7529175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jan 13;270(2):815-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7822316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Feb 10;270(6):2451-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7531689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 May 26;158(1):113-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7789793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jun 23;270(25):15187-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7541038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Nov 3;83(3):463-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8521476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Aug 2;271(31):18527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8702500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Aug 9;86(3):435-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1996 Oct 17;383(6601):637-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8857542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1996 Aug;21(4):871-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8878048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1996 Feb;9(2):173-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9005438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1968 May;7(5):1661-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4870332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1980 Jun;77(6):3379-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6774337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Feb 15;263(5):2146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2892836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Mar 2;338(6210):67-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2493138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Jul;86(14):5390-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2664782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Jul 20;340(6230):245-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2547163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Dec 21-28;342(6252):953-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2531848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1989 Dec;16(5-6):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2692852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 May 20;77(4):513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7514503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5372-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7515500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Mar;136(3):833-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8005438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Dec 20;271(51):32923-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8955134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Dec 27;87(7):1157-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8980222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Dec 27;87(7):1285-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8980234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Mar;71(3):2107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9032343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1991 Jan 14;278(1):123-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1847111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Mar;11(3):1718-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1996117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1705713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:3-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Apr 19;65(2):219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1707759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Aug 23;66(4):799-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1652374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Aug 23;66(4):807-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Oct 18;67(2):255-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1913822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9578-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1946372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jan 2;355(6355):33-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1731198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Apr 28;31(16):3896-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1373650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 May 1;89(9):3686-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1373887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 May 15;267(14):9474-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1374404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jun 25;357(6380):692-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1377361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jun 25;357(6380):695-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1377362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Aug 15;267(23):16029-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1379588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7471-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1380159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Biol. 1992 May;4(5):448-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1515410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Dec 17;360(6405):682-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1281518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 1993;22:123-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7688608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Nov 5;268(31):22992-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7693682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Jul 15;78(1):35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7518356</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Heitman, J" sort="Heitman, J" uniqKey="Heitman J" first="J" last="Heitman">J. Heitman</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Alarc N, C M" sort="Alarc N, C M" uniqKey="Alarc N C" first="C M" last="Alarc N">C M Alarc N</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A87 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A87 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9315655
   |texte=   FKBP12 physically and functionally interacts with aspartokinase in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9315655" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020